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Introduction

In the orthopaedic field, the muscle-bone relationship is of ut-

most importance as surgeons must often battle increased compli-

cations, morbidity, and delayed fracture healing in cases with

extensive soft tissue damage resulting from high energy trauma.

The Gustilo-Anderson open fracture classification scale, which

has been commonly used for nearly 4 decades, classifies severity

almost solely on soft tissue (primarily muscle) injury, and the

complication rate is much higher in fractures with soft tissue dam-

age1. Although it has long been accepted that intact surrounding

soft tissues are important in the fracture healing process, the un-

derlying mechanisms have not been fully elucidated. However,

basic science and translational research have made advances in

the understanding of how muscle injuries impede fracture healing. 

To understand muscle’s potential role in fracture repair, a

comprehension of the repair process is necessary. In brief, frac-

ture repair consists of three chronological and overlapping

phases: a reactive phase, a reparative phase, and a remodeling

phase. The reactive phase peaks within the first 24-48 hours

and lasts less than 1 week. During this phase, endothelial dam-

age to the vasculature causes a hematoma, drawing in inflam-

matory cells (lymphocytes, polymorphonuclear cells,

monocytes) and fibroblasts to form granulation tissue2. The

granulation tissue is important for vascular ingrowth as well

as the recruitment of mesenchymal stem cells (MSCs). The in-

flammatory cells release cytokines such as TNF-α, IL-1, IL-

6, IL-11, and IL-18 to induce osteogenic differentiation of

MSCs as well as promote angiogenesis3. The reparative phase

begins within a few days after fracture and lasts several weeks.

Pluripotent mesenchymal cells, dependent on local strain and

oxygen tension, differentiate into fibroblasts, chondroblasts,

or osteoblasts. Healing can occur through intramembranous

ossification alone (direct healing) or a combination of in-

tramembranous and endochondral ossification (indirect heal-

ing), depending on the degree of mechanical stability4. In

endochondral ossification, a fibrocartilage callus forms and is

subsequently replaced by a bony callus with woven bone dep-

osition. In intramembranous ossification, lamellar bone regen-

eration occurs without the need for remodeling, but it requires

stable fixation2. Thus, the ossification process is dependent on
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the stability of the fracture site. During the remodeling phase,

the woven bone is replaced with lamellar bone, and the bone

is gradually remodeled under mechanical stress to its original

contour. This phase can last for several years2,5.

Vascularization and fracture healing

The importance of vascularization in osteogenesis cannot

be overemphasized, as a nearby vascular supply is required for

both normal development and bone regeneration6-9. Indeed, an

early step in the fracture healing process is the formation of

granulation tissue consisting of connective tissue and small

blood vessels10,11, reinforcing the importance of vascularization

in healing. Surrounding soft tissues at the fracture site prima-

rily have been considered an important vascular source12 to de-

liver oxygen13, nutrients13, and potential osteoprogenitor cells

to the injured area14,15. In the surrounding soft tissue are MSCs

and pericytes, which are crucial for angiogenesis in the

wounded tissue16,17. In the clinical arena, the rate of non-union

is 4 times higher in cases with reduced vascular function18, and

in animal fracture models that disrupt angiogenesis, bone for-

mation is hindered through the suppression of osteoblast pro-

liferation18-20. Muscle flap coverage has been shown to increase

bone blood flow and the rate of osteotomy union compared to

skin tissue coverage, supporting the vascular role of muscle in

bone regeneration21-23.

Although vascularization has been shown to be critical for

regeneration, there has been evidence of nearly equal vascu-

larization in healed bone and non-unions in animal studies as

well as in human patients20,24-26. In a murine open tibial fracture

model, Harry et al. observed faster fracture healing in muscu-

locutaneous compared to fasciocutaneous flaps, despite the

musculocutaneous flaps having decreased vascularization27.

These studies point to a more extensive role of muscle in the

repair process than solely as a vascular supply.

Osteoprogenitors derived from muscle

The relationship between muscle and bone has been ob-

served for decades and continues to be elucidated. Urist first

deduced muscle’s ability to induce bone formation in 1965

when decalcified bone implanted into muscle resulted in new

bone formation28,29. In fracture healing studies in multiple

species, callus formation tends to be the largest and most dense

at the interface between bone and muscle30, suggesting that

muscle contributes to callus formation or provides a suitable

environment for its occurrence. 

Muscle is also a common site for ectopic bone formation

following physical trauma31, orthopaedic surgery32, or due to

disease like fibrodysplasia ossificans progressiva, which has

been identified to be a result of a mutation in a gene encoding

a bone morphogenetic protein (BMP) receptor33. BMPs, a

group of growth factors involved in tissue architecture

throughout the body, are of particular importance to bone for-

mation as they induce osteoblast differentiation. 

In the presence of BMPs, cells derived from muscle are ca-

pable of differentiating into cells expressing bone markers34-37.

That muscle-derived cells capable of displaying osteogenic po-

tential under proper conditions could partly explain the impor-

tance of muscle in fracture healing aside from their role in

vascularization. In addition, muscle may be able to influence

bone in a manner unlike any other tissue. When both muscle

and fat are activated by exposure to a BMP-2 encoded aden-

ovirus, the “gene-activated” muscle results in more consistent

bone regeneration than the “gene-activated” fat38. Furthermore,

when muscle-derived stem cells (MDSCs) are recruited and

driven to osteogenic differentiation by BMPs, they display an

osteogenic potential that is equivalent to those derived from

bone marrow39. Lineage-traced MDSCs in a fracture healing

model have been found to alter gene expression to give rise to

chondrocytes, up-regulating chondrogenic markers Sox9 and

Nkx3.2 and down-regulating the muscle marker Pax336. These

studies provide evidence that, in the appropriate environmental

conditions, muscle can supply osteoprogenitor cells required

for the fracture repair process.

It should be noted, however, that MDSCs are not the sole

osteoprogenitor cells derived from muscle. C2C12 myoblasts

infected with a retroviral vector have been found to overex-

press osteoactivin (OA) and transdifferentiate into osteoblasts

and express bone-specific markers40. Muscle-derived stromal

cells, when administered TNF-α at low concentrations, are

also capable of undergoing recruitment and osteogenic differ-

entiation41. Muscle satellite cells were originally believed to

be muscle stem cells restricted to the myogenic lineage42, but

the osteogenic potential of these cells has been observed under

several conditions. Satellite cell-derived myoblasts have been

shown to differentiate into osteocytes following treatment with

BMPs43, into osteoblasts in vivo and in vitro in the presence of

platelet-rich plasma44, and the osteogenic potential of satellite

cells can increase in response to cutaneous burn trauma45.

Satellite cells have been observed to express both myoblastic

(Pax7, MyoD) and osteoblastic (alkaline phosphatase, Runx2)

markers and are capable of differentiating into osteoblasts

spontaneously46.

The abundance of potential osteogenic cells derived from

muscle could have applications in the future in tissue engineer-

ing techniques, particularly in cases where the bone marrow or

periosteum is compromised. It has been commonly believed

that in fractures in which the periosteum is intact, repair occurs

largely through endochondral ossification driven by a periosteal

supply of cells10,47-50. Indeed, in open fractures with a stripped

periosteum, Liu et al. found that myogenic cells of the MyoD-

lineage contributed to fracture repair, but MyoD-expressing

cells were not incorporated into the callus in the case of a closed

fracture with intact periosteum51. Such a study demonstrates

that myogenic cells can be activated to serve as a secondary

supply of cells when the periosteal supply becomes compro-

mised52,53. These recent findings of muscle’s ability to augment

the periosteal supply of osteoprogenitor cells provide insight

into the clinical observations of prolonged recovery time and

increased morbidity that is especially seen associated with high

energy fractures with substantial soft tissue damage.
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Muscle-bone paracrine interactions in 

bone repair

Only within the past two decades has the muscle secretome

been identified and explored. With the recent advent of im-

proved characterization instruments, the muscle secretome has

rapidly expanded to over 200 proteins54. Muscle secreted pro-

teins important in muscle-bone interactions include, but are

not limited to: myostatin, BMPs, secreted protein acidic and

rich in cysteine (SPARC or osteonectin), interleukin (IL)-1,

IL-4, IL-6, tumor necrosis factor (TNF)α, and insulin-like

growth factor (IGF)-141,54-56. Many of the muscle derived fac-

tors have previously been described to play a role in muscle-

bone interactions without addressing the interactions

specifically during fracture repair. Importantly, the presence

of inflammation differentiates fracture repair from bone for-

mation during development. That is, fracture healing is initi-

ated by an inflammatory cascade, which is mediated by a

number of factors, including but not limited to: neutrophils,

macrophages, lymphocytes, and various inflammatory cy-

tokines (i.e., IL-1, IL-6, TNFα)2,57-59. Mounting and maintain-

ing an appropriate inflammatory response in early fracture

healing is critical for adequate repair and multiple studies have

demonstrated that interference with the inflammatory process

can either impair60,61 or improve62 fracture healing. This review

focuses primarily on four factors known to be involved in mus-

cular injury and fracture repair and are therefore likely to con-

tribute to muscle-bone interactions in the presence of

inflammation.

Insulin-like growth factor-1

IGF-1 is recognized as a key myokine that may direct local

fracture healing63. IGF-1 is expressed by maturing osteoblasts

in culture64 and expression has been localized using in situ hy-

bridization to osteoblasts during phases of matrix formation

and remodeling in fractured human bone65. Further signifying

the importance of IGF-1 to fracture healing, delivery of IGF-

1 to ovine bone defects promotes accelerated bone forma-

tion66,67. The association of low systemic levels of IGF-1 with

osteoporosis68,69 suggests that local production of IGF-1 by

nearby skeletal muscle tissue may support bone healing. Given

that skeletal muscle up-regulates expression of IGF-1 in re-

sponse to injury70-72, the context of fractures involving muscle

trauma specifically highlight this possibility. Overexpression

of IGF-1 in skeletal muscle can result in increased systemic

concentrations evidencing the capacity of skeletal muscle as a

paracrine organ to support nearby bone healing73. IGF-1 plays

a role in muscle fiber repair and regenerative processes via a

number of mechanisms to include increasing protein synthesis

via PI3-AKT-mTOR pathway and by activating and promoting

proliferation of satellite cells74,75. Perhaps most interesting in

the context of complex musculoskeletal injury is the anti-in-

flammatory (i.e., inhibition of NF-κB) role of IGF-1 in mus-

cle76,77 and bone67.

Myostatin

Perhaps the most well-known muscle derived protein, myo-

statin, has been implicated to play a significant, albeit in-

hibitory, role in fracture repair. Myostatin is a member of the

TGF-β superfamily, negatively regulating muscle growth, de-

velopment, and regeneration78,79. Its negative trophic influence

has been supported in myostatin null mice that demonstrate in-

creased bone strength and increased bone mineral density80-82.

Furthermore, myostatin inhibition by decoy receptors increases

musculoskeletal mass83. Interestingly however, expression of

myostatin is elevated with significant musculoskeletal injury,

specifically in the early part of bone repair84,85. Due to its neg-

ative role in musculoskeletal development, interventions were

targeted toward inhibiting myostatin after skeletal injury. Small

molecule inhibition of myostatin following orthopaedic trauma

has been demonstrated to improve muscle regeneration and

fracture healing79,85,86. These data suggest that inhibition of

myostatin may be a plausible intervention to improve fracture

healing outcomes in patients with significant musculoskeletal

injuries. However, the conundrum of elevated myostatin after

musculoskeletal injury remains poorly understood.

Bone morphogenetic proteins

Generally speaking, BMPs are growth factors for various

skeletal tissues and are required for skeletal development. Con-

ditional knockout mice deficient in BMPs displayed a wide

range of skeletal defects87,88. There are 7 members of the BMP

family, of which BMPs 2-7 belong to the TGFβ superfamily89.

Multiple BMPs have been demonstrated to promote osteoblas-

tic differentiation of bone marrow stromal cells90,91. Specifi-

cally, BMP-2 and BMP-7 are FDA approved for use in clinical

musculoskeletal therapeutics due to their role in osteoblast dif-

ferentiation and musculoskeletal repair. Unfortunately, con-

cerns have arisen regarding the multiple side effects and

off-label usage of BMPs including a recent link to oncogenic

side effects with use of BMP-292,93. More novel approaches to

utilization of BMP-2 in fracture healing includes modified

muscle cells that secrete BMP-2. Critical size rat femoral de-

fects underwent quicker bridging and restored mechanical

strength when receiving activated muscle secreted BMP-238.

Though not a member of the TGFβ superfamily and not used

in the clinical setting currently, BMP-1 is secreted by muscle

and may play a role in fracture healing. BMP-1, specifically,

is a protease secreted by muscle that cleaves procollagen94. In

patients with traumatic blast injuries, both BMP-1 protein and

mRNA levels were elevated95, suggesting a significant role for

BMP-1 in musculoskeletal repair. Therefore, better under-

standing of the roles of muscle derived BMPs in skeletal tissue

regeneration is warranted to improve musculoskeletal repair

in patients who suffer extensive traumatic injuries.

SPARC or osteonectin

Osteonectin is a phosphorylated glycoprotein present in de-

veloping bone in many animal species96. Osteonectin is sug-

gested to serve multiple functions in the developing bone
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matrix, including collagen organization, osteoblast growth and

proliferation, and matrix mineralization97. Mice deficient in

osteonectin display osteopenia and decreased bone mineral

content98. Importantly, osteonectin is secreted by injured and

regenerating myotubes and muscle fibers99. Osteonectin ex-

pression by these sources is dependent on injury severity, sug-

gesting that more severe musculoskeletal injuries result in

greater ostonectin expression99. Longitudinal studies of frac-

ture healing show detectable osteonectin transcripts throughout

the healing phase100,101, most notably from days 9 to 15102.

These studies provide evidence for the significant role os-

teonectin plays in bone regeneration and suggest muscle may

be a source of osteonectin during musculoskeletal repair. 

Mechanical muscle-bone interactions

It would be remiss to forego some discussion of the mechan-

ical influences involved in muscle bone interactions. The cel-

lular mechanisms by which mechanical strain affects bone are

largely uncharacterized, but some data suggest it is due in part

to gap junctions in bone formed by connexin43103,104. Though

characterization of mechanically induced cellular mechanisms

remains limited, multiple studies have pointed to the impor-

tance of muscle’s mechanical interactions on bone health105.

Disuse atrophy via denervation or immobilization has been

shown to decrease bone integrity in animal models106-108. Fur-

thermore, multiple studies have demonstrated that muscle

paralysis induced by administration of botulinum toxin impairs

bone quality and/or fracture healing109-113. Further research into

the cellular mechanisms of the mechanical influence of muscle

is warranted to better understand how bone can be further mod-

ified by muscle during the healing process. 

Muscle in fracture healing - current models 

Murine

Multiple murine studies have been conducted to examine the

extent to which muscle enhances bone repair after significant

musculoskeletal injury. Zacks and Sheff114 conducted early sen-

tinel research addressing the potential for muscle to contribute

to bone regeneration in 1982. Zacks and Sheff utilized experi-

mental groups where after limb muscle resection, isotopic or

heterotopic minced muscle implants were placed immediately

adjacent to the periosteum. Their control groups consisted of

liver minced implant or no implant. They concluded that iso-

topic and heterotopic minced muscle preparations implanted

adjacent to the periosteum could directly induce new bone for-

mation in situ as demonstrated by the formation of exostoses

and metaplastic nodules in the minced muscle implants114. The

work of Zacks and Sheff confirmed the importance of studying

the trophic influence of muscle on bone.

As previously mentioned, Harry et al. conducted a murine

study addressing the importance of muscle in open tibial fracture

repair27. The authors demonstrated that musculocutaneous flaps

performed superior to the fasciocutaneous flaps, though the fas-

ciocutaneous flaps provided more angiogenic capacity. There-

fore, the osteogenic capability of muscle is greater than that of

cutaneous flaps and extends beyond simply angiogenesis.

Rattus

Multiple studies have also been conducted utilizing rat mod-

els to assess bone healing in light of soft tissue injuries. A study

by Hao et al.109 evaluated the effect of muscle atrophy and

paralysis on femoral fracture healing. Atrophy of the quadri-

ceps muscle, induced by administration of botulinum A toxin,

negatively impacted the healing capacity of femoral fractures

in rats. Utvag et al. conducted three critical studies115-117 as-

sessing the role of periosteum or surrounding soft tissue in

bone healing. In 1998 Utvag et al.115 demonstrated that fracture

healing was impaired when periosteal tissue was mechanically

removed from interacting with surrounding muscle. Addition-

ally, Utvag et al. showed that significant muscle injury and ab-

sence of muscle by resection, or by traumatic injury in the

clinical setting, significantly compromised the regeneration

potential of non-augmented healing bone116,117. The importance

of muscle for bone healing was further confirmed by the work

of Willett et al. that demonstrated that volumetric muscle loss

(VML) also impairs the effectiveness of BMP-2 in the healing

of a critical size bone defect118. Taken together, it is clear that

frank loss of muscle tissue (VML) is a significant comorbidity

to poor bone healing outcomes. 

Humans

Since the mid 1970s, open fractures have been graded clin-

ically according to the Gustilo-Anderson classification

scale1,119, which is largely based on the severity of soft tissue

injury associated with open fractures. Gustilo and Anderson

identified 3 types of fractures: Type I - open fracture with a

wound <1 cm and clean; Type 2 - open fracture with a wound

>1 cm without extensive soft tissue damage; and Type 3 - open

fracture with extensive soft tissue damage119. Type 3 fractures

were later subdivided into 3 subcategories1. The Gustilo An-

derson classification makes it evident that soft tissue injury

plays a significant role in the musculoskeletal repair process

in the clinical setting. Specifically, open fractures (Type 3)

with extensive soft tissue injury demonstrate greater compli-

cation rates than open fractures without soft tissue injury

(Types 2 & 3)120,121.

Similar to the results observed from animal studies, sub-

stantial clinical data exist characterizing the importance of

muscle integrity in bone repair. A multitude of studies have

demonstrated soft tissue damage associated with fractures im-

pairs the ability of bone to repair properly122,123, while the qual-

ity of the muscle bed is essential for appropriate bone

formation and bone healing30,51.

Similar to the murine study conducted by Harry et al.27,

Gopal et al.124 specifically examined the treatment of open tibial

fractures with fasciocutaneous flaps versus muscle flaps in hu-

mans. The results of their study were then later confirmed by

Harry et al. in the mouse model, with both groups concluding

that muscle flaps are superior in bone healing. Even in clinical
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practice, the gold standard of treating critical size defects or ex-

tensive fractures includes soft tissue coverage, supporting the

significance of muscle-bone interactions during bone healing.

A more recent meta-analysis by Reverte et al.125 analyzed 16

studies addressing the union rate and time to fracture union in

patients with tibial fractures and associated compartment syn-

dromes. Reverte et al. demonstrated that tibial fractures with

associated soft tissue injury significantly impaired fracture heal-

ing. The rate of delayed union or non-union in tibial fractures

with associated compartment syndrome was 55% compared to

only 18% in patients with tibial fracture without associated

compartment syndrome125. This study points to the importance

of soft tissue integrity in the quality of fracture healing.

Conclusion

Taken together, these studies illustrate the importance of

muscle-bone interactions in bone regeneration. Exact mecha-

nisms by which muscle is responsible for bone formation in

the healing process are not well elucidated. Most of the current

literature is limited to qualitative findings of muscle’s role in

bone healing. Therefore, more rigorous models with aims di-

rected toward identification and quantification of muscle-de-

rived effectors of bone regeneration are required. Identifying

and characterizing the muscle-derived factors responsible for

bone healing may provide opportunities to develop therapies

to augment normal physiologic mechanisms underlying bone

regeneration.

Current strategies, such as the use of BMPs, in fracture heal-

ing have recently been thought of as having more limited ben-

efit due to the more robust understanding of detrimental side

effects. This review outlines some potential targets for thera-

peutic development, including stimulation of MDSCs, inhibi-

tion of myostatin, or administering or enhancing the targeted

expression of osteonectin. Future studies addressing muscle

factors associated with bone healing may provide insight into

these mechanisms necessary to promote bone regeneration.

Soft tissue integrity is crucial to appropriate bone regeneration,

but our understanding of the mechanisms is limited at the pres-

ent time. A better understanding of muscle’s effect on fracture

healing at the cellular and molecular levels will open transla-

tional opportunities to incorporate the findings into clinics and

operating rooms abroad.
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